ITALIANO HIGH ACCESSIBILITY
Torna alla Home Page Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria Search in the site...  

European Charter for Researchers      HR EXCELLENCE IN RESEARCH
CREA - Via Po, 14 - 00198 ROMA
P.IVA: 08183101008 - C.F.: 97231970589
Tel: +39 06 478361 - Fax: +39 06 47836320 -
Posta Elettronica Certificata:

CIVIC ACCESS PRESS REVIEW URP JOB OPPORTUNITIES CONTRACTS TRANSPARENT ADMINISTRATION

freccina You are here: Home->Publications->Datasheet


Publication datasheet
Title:
Determining wood chip size: image analysis and clustering methods
Authors:
Febbi, P.; Costa, C.; Menesatti, P.; Pari, L.
Year:
2013
Languages:
ENG, eng
Journal:
JOURNAL OF AGRICULTURAL ENGINEERING. Proceedings of the 10th Conference of the Italian Society of Agricultural Engineering
Kind of publication:
Elettronico
Location:
Editor:
PAGEPress
Abstract in Italian:
Abstract in English:
One of the standard methods for the determination of the size distribution of wood chips is the oscillating screen method (EN 15149-1:2010). Recent literature demonstrated how image analysis could return highly accurate measure of the dimensions defined for each individual particle, and could promote a new method depending on the geometrical shape to determine the chip size in a more accurate way. A sample of wood chips (8 litres) was sieved through horizontally oscillating sieves, using five different screen hole diameters (3.15, 8, 16, 45, 63 mm); the wood chips were sorted in decreasing size classes and the mass of all fractions was used to determine the size distribution of the particles. Since the chip shape and size influence the sieving results, Wang’s theory, which concerns the geometric forms, was considered. A cluster analysis on the shape descriptors (Fourier descriptors) and size descriptors (area, perimeter, Feret diameters, eccentricity) was applied to observe the chips distribution. The UPGMA algorithm was applied on Euclidean distance. The obtained dendrogram shows a group separation according with the original three sieving fractions. A comparison has been made between the traditional sieve and clustering results. This preliminary result shows how the image analysis-based method has a high potential for the characterization of wood chip size distribution and could be further investigated. Moreover, this method could be implemented in an online detection machine for chips size characterization. An improvement of the results is expected by using supervised multivariate methods that utilize known class memberships. The main objective of the future activities will be to shift the analysis from a 2-dimensional method to a 3-dimensional acquisition process.

AREA RISERVATA  Webmaster:
Logo mySQL Logo PHP